Kamis, 12 Juni 2014

Discrete Chebyshev transform

In applied mathematics, the discrete Chebyshev transform (DCT), named after Pafnuty Chebyshev, is one of either of two main varieties of DCTs: the discrete Chebyshev transform on the 'roots' grid of the Chebyshev polynomials of the first kind  T_n (x) , and the discrete Chebyshev transform on the 'extrema' grid of the Chebyshev polynomials of the first kind.
The discrete chebyshev transform of u(x) at the points {x_n} is given by:
 a_m =\frac{p_m}{N}\sum_{n=0}^{N-1} u(x_n) T_m (x_n)
where:
 x_n = -\cos\left(\frac{\pi}{N} (n+\frac{1}{2})\right)
 a_m = \frac{p_m}{N}  \sum_{n=0}^{N-1} u(x_n) \cos\left(m \cos^{-1}(x_n)\right)
where  p_m =1 \Leftrightarrow m=0  and  p_m = 2  otherwise.
Using the definition of x_n ,
 a_m =\frac{p_m}{N} \sum_{n=0}^{N-1} u(x_n) \cos\left(\frac{m\pi}{N}(N+n+\frac{1}{2}) \right)
 a_m =\frac{p_m}{N} \sum_{n=0}^{N-1} u(x_n) (-1)^m\cos\left(\frac{m\pi}{N}(n+\frac{1}{2}) \right)
and its inverse transform:
 u_n =\sum_{m=0}^{N-1} a_m T_m (x_n)
(This so happens to the standard Chebyshev series evaluated on the roots grid.)
 u_n =\sum_{m=0}^{N-1} a_m \cos\left(\frac{m\pi}{N}(N+n+\frac{1}{2}) \right)
\therefore u_n =\sum_{m=0}^{N-1} a_m (-1)^m\cos\left(\frac{m\pi}{N}(n+\frac{1}{2}) \right)
This can readily be obtained by manipulating the input arguments to a discrete cosine transform.

Sumber : http://en.wikipedia.org/wiki/Discrete_Chebyshev_transform

0 komentar:

Posting Komentar