Selasa, 10 Juni 2014

Anscombe transform

In statistics, the Anscombe transform, named after Francis Anscombe, is a variance-stabilizing transformation that transforms a random variable with a Poisson distribution into one with an approximately standard Gaussian distribution. The Anscombe transform is widely used in photon-limited imaging (astronomy, X-ray) where images naturally follow the Poisson law. The Anscombe transform is usually used to pre-process the data in order to make thestandard deviation approximately constant. Then denoising algorithms designed for the framework of additive white Gaussian noise are used; the final estimate is then obtained by applying an inverse Anscombe transformation to the denoised data.

For the Poisson distribution the mean m and variance v are not independent: m = v. The Anscombe transform[1]
A:x \mapsto 2\sqrt{x+\tfrac{3}{8}} \,
aims at transforming the data so that the variance is set approximately 1 whatever the mean. It transforms Poissonian data x (with mean m) to approximately Gaussian data of mean 2\sqrt{m + 3/8} - 1/(4\sqrt{m}) and standard deviation 1. This approximation is valid provided that m is larger than 4.[citation needed]

Sumber : http://en.wikipedia.org/wiki/Anscombe_transform

0 komentar:

Posting Komentar