Senin, 09 Juni 2014

Airy zeta function

In mathematics, the Airy zeta function, studied by Crandall (1996), is a function analogous to the Riemann zeta function and related to the zeros of the Airy function.

The Airy function
\mathrm{Ai}(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\tfrac13t^3 + xt\right)\, dt,
is positive for positive x, but oscillates for negative values of x; the sequence of values of x for which Ai(x) = 0, sorted by their absolute values, are called the Airy zeros and are denoted a1, a2, ...
The Airy zeta function is the function defined from this sequence of zeros by the series
\zeta_{\mathrm{Ai}}(s)=\sum_{i=1}^{\infty} \frac{1}{|a_i|^s}.
This series converges when the real part of s is greater than 3/2, and may be extended by analytic continuation to other values of s.

Sumber : http://en.wikipedia.org/wiki/Airy_zeta_function

0 komentar:

Posting Komentar